If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-50X-1250=0
a = 1; b = -50; c = -1250;
Δ = b2-4ac
Δ = -502-4·1·(-1250)
Δ = 7500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7500}=\sqrt{2500*3}=\sqrt{2500}*\sqrt{3}=50\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-50\sqrt{3}}{2*1}=\frac{50-50\sqrt{3}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+50\sqrt{3}}{2*1}=\frac{50+50\sqrt{3}}{2} $
| 3x=2x=(x+12)=(2+4) | | 3x=2x=(x+12)=(2=4) | | 2/3(4x-11)=15/7(3x-28) | | -8z+18=4z-18 | | X^2+50x+1250=0 | | 0.2x+7.2=6.5 | | -7x+5(x-8)=-20 | | 3(4x-10)+8=10+2+2 | | 2(1/13)c=2(1/10) | | X^2-50x+1250=0 | | -24-6n=-6(-8-5n) | | 2x-6=62 | | x-4=2(x+8) | | 3.25z-2.7z=-6 | | 3x+30+3x+30+81=180 | | 21/13c=21/10 | | 4(x+7)=9(x+1)=22 | | 4n-54=-14n | | 4(2x–1)=2(x–8) | | 7(-3a-4)=-28-2a | | 32a^2=7a+6 | | 7/15x-1=22 | | 36y2^+36+9=0 | | 3y–8=y+5+5y | | 7+n=-(6-n) | | 8-4x=2x^2 | | 36y^2+36+9=0 | | 8(2x-9)+7=3(9x+8)-1 | | 2(w)=180 | | 5/8x+10=2 | | (-4x)-53+10x=67 | | 77-v=156 |